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Abstract
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Exposure to fine particulate pollution (PM2.5) increases 
mortality and morbidity and reduces human capital for-
mation and worker productivity. As a consequence, high 
levels of particulate pollution may adversely affect economic 
activity. Using a novel dataset of changes in the annual gross 
domestic product of Indian districts, this paper investigates 
the impact of changes in the level of ambient PM2.5 on 

district-level gross domestic product. Using daily tempera-
ture inversions as an instrument for pollution exposure, 
this paper finds that higher levels of particulate pollution 
reduce gross domestic product. The effect is non-trivial—
the median annual increase in the level of PM2.5 reduces 
year-to-year changes in gross domestic product by 0.56 
percentage points.

This paper is a product of the Development Research Group, Development Economics. It is part of a larger effort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may 
be contacted at abehrer@worldbank.org.  
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1 Introduction

Exposure to high levels of particulate air pollution, especially PM2.5, has negative conse-

quences for human health and productivity. Studies show that exposure to elevated levels of

air pollution substantially decreases the rate of human capital formation (Persico and John-

son, 2020; Heissel et al., 2019; Levy et al., 2020; Molina, 2021; Zivin et al., 2020), increases

mortality (Pope III et al., 2002; Krewski et al., 2009; Lepeule et al., 2012), morbidity (Tong,
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comments. Tanay Raj Bhatt provided excellent research assistance in the construction of the district data.
The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They
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Executive Directors of the World Bank or the governments they represent.



2019; Wu et al., 2020), childhood stunting (Balietti et al., 2022), decreases labor supply

(Aragón et al., 2017), and reduces labor productivity (Chang et al., 2016; Fu et al., 2021).

Air pollution also negatively impacts crop yields (Burney and Ramanathan, 2014a; Burney,

2020).1

These negative impacts closely mirror the well-documented negative impacts of exposure

to high temperatures at the individual level. Exposure to high temperature increases mortal-

ity (Barreca et al., 2016), reduces labor supply (Graff Zivin et al., 2017), labor productivity

(Somanathan et al., 2015), human capital formation (Garg et al., 2020; Park, 2020; Park

et al., 2020), and crop yields (Schlenker and Roberts, 2009). The negative consequences of

heat measured at the micro level have been shown to aggregate to substantial macro-effects.

Burke et al. (2015) show that across both rich and poor countries higher temperatures reduce

GDP levels. Even at current levels of heat exposure these effects are sizable, especially in

lower income countries.

Despite the similarity in the micro level impacts of air pollution and exposure to extreme

heat there has been limited analysis of the macro level impacts of air pollution. The con-

sistency in the micro level impacts of heat and air pollution combined with the existence of

substantial macro level effects of heat suggests that air pollution may also have macro level

effects. Increased worker absenteeism, reduced job performance (reduced productivity), and

reduced levels of human capital accumulation as a result of air pollution are likely to transmit

to reductions in overall economic activity. These consequences of pollution exposure might

be expected to reduce year-over-year changes in GDP following years with higher levels of

pollution. This hypothesis finds support in recent work examining air pollution in Europe

at the NUTS-3 level that finds a 1µg/m3 increase in PM2.5 levels reduces annual changes

in GDP by 0.8% (Dechezleprêtre et al., 2019) and evidence from the United States that

pollution reduces GDP by 0.4% in rural counties (Avila Uribe, 2023).2

This paper investigates whether increasing pollution in a given year has negative conse-

quences for economic activity in that year using a panel of district level GDP data from India

covering the years 1998-2020. Existing empirical work demonstrating that pollution expo-

sure can impact aggregate GDP is based on evidence from Europe and the United States.

However, exposure to pollution in both these locations is substantially lower than average

exposure across low- and middle-income countries. On average the level of PM2.5 in the

countries studied in Dechezleprêtre et al. (2019) was 10µg/m3. Average levels of exposure

in India and China exceed 50µg/m3. In some districts of India the annual average level of

1For a recent review of the literature on the variety of negative impacts of air pollution, especially those
on human capital, see Aguilar-Gomez et al. (2022).

2NUTS-3 is the smallest administrative unit in Europe.

2



PM2.5 exceeds 100µg/m
3. That is roughly 20 times the World Health Organization’s (WHO)

recommended levels and more than double India’s own standards. Peak exposures in Delhi

can exceed 500µg/m3.

Given the uniformly higher ambient pollution concentrations in most low- and middle-

income countries – and the fact that levels of ambient particulate pollution are increasing in

most low- and middle-income countries (Shaddick et al., 2020) – it is important to understand

how the effects of pollution may vary at higher levels of pollution than are typically observed

in Europe or the United States. Higher levels of pollution might suggest more severe effects.

However, consistently higher levels of pollution might also induce adaptation that reduces

the marginal effects of a given change in the level of pollution (Neidell, 2009).

A global analysis that examines the impact of pollution on GDP using a modified Solow

model that accounts for the damages of air pollution suggests that true growth rates in

India have been an average of 50 basis points lower than reported rates since 2005 due to

the negative consequences of pollution (Mohan et al., 2020). This represents a substantial

divergence from the experience in the largest European economies where pollution adjusted

growth has slightly exceeded measured growth since 2005. These results suggest that the

higher levels of pollution experienced in low- and middle-income countries may lead to more

severe consequences.

Measuring the impact of changes in air pollution on GDP growth in a causal effects

framework, rather than a model-based framework, is challenging because of reverse causal-

ity. GDP growth is generally strongly correlated with pollution levels because of the increase

in energy demand and other polluting activities (for example, increases in traffic) that often

come with GDP growth. As a result, increases in GDP have tended to drive increases in

pollution.3 Thus while increases in pollution may have negative impacts on GDP growth

relative to a counterfactual world in which growth did not generate pollution, it can be

difficult to measure these effects because we do not observe this counterfactual world. In-

stead, identifying the potential negative impacts of air pollution on GDP requires identifying

exogenous changes in pollution levels whose effect on GDP growth can then be measured.

To isolate changes in air pollution that are not driven by GDP growth this paper follows

several existing papers on the economic impacts of air pollution by employing an instrumental

variables (IV) approach that instruments for the level of pollution with the presence of

temperature (thermal) inversions (Fu et al., 2021; Chen et al., 2022; Dechezleprêtre et al.,

2019). A temperature inversion is a meteorological event that occurs when temperatures

3This is broadly true when income per capita is at low levels (Stern, 2018; Dinda, 2004; Dasgupta et al.,
2002; Cole et al., 1997; Cuaresma and Heger, 2019; Wilebore et al., 2019). The exact threshold is debated
but above a certain level of per capita income GDP growth can become disconnected from pollution growth.
The extent of the decoupling varies across countries and across pollutants however (Harbaugh et al., 2002).
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at atmospheric levels above the surface level are higher than at the surface. Under normal

conditions temperature declines monotonically as one moves up in the atmosphere away from

the surface. When temperatures at higher levels in the atmosphere are higher than at the

surface the air at the surface becomes stationary and trapped, which prevents the removal of

pollutants by atmospheric circulation. Existing work has shown that the occurrence of these

inversions increases pollution at the surface (Fu et al., 2021; Chen et al., 2022; Dechezleprêtre

et al., 2019). The effects can be extreme. A temperature inversion is believed to have

exacerbated the consequences of a gas leak at an industrial plant in Bhopal, India in 1984

that ultimately harmed more than 500,000 people (Boybeyi et al., 1995).

Using inversions as an instrument, our results suggest that high levels of air pollution have

a negative effect on economic growth measured as the first difference of GDP at a district

level. In our primary specification a 1µg/m3 year over year increase in PM2.5 pollution

reduces the year-to-year change in GDP by 0.7 percentage points. At the means in our

sample this implies an increase in pollution levels that is 1 SD larger than the average year

over year change reduces year-to-year GDP changes by 0.37 SD. The contemporaneous effect

of pollution on changes in GDP appears to be partially offset by higher GDP in subsequent

years such that the total impacts are slightly smaller than the immediate effect. Our effects

are comparable to those estimated by Dechezleprêtre et al. (2019) in Europe. This despite

the fact that average pollution levels in India are substantially higher than those in Europe.

Overall, our results suggest that air pollution imposes meaningful economic costs. Our

estimates suggest that lowering air pollution could have led to larger year-to-year changes

in India’s GDP in the recent past. However, it is important to note that reducing air

pollution also has significant costs and may require structural changes in India’s economy.

Such structural changes are likely to have direct impacts on growth rates that may be larger,

and differently signed, than the impacts of reducing air pollution. Despite this, there are

likely significant long-term benefits from reducing air pollution.

2 Conceptual framework

It is well documented that air pollution has negative effects on human well-being. As a

result, in our conceptual framework we assume that air pollution impacts aggregate GDP

primarily by changing effective labor supply. While it is possible that air pollution impacts

the productivity of capital in an economy there is little current evidence to support that

mechanism.4 Air pollution could change effective labor supply by either reducing labor

supply or by reducing the productivity of workers or both. We outline the evidence for each

4We discuss evidence that air pollution influences crop yields and power generation below.
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mechanism here.

Air pollution affects labor supply decisions in the short-run primarily by increased absen-

teeism at work due to sickness.5 The health effects of PM2.5 exposure are well documented

(WHO, 2013; McDuffie et al., 2021; Pandey et al., 2021). They are due to exposure over

both the short term (hours, days) and long term (months, years) and include respiratory

and cardiovascular morbidity, such as aggravation of asthma, respiratory symptoms and an

increase in hospital admissions. Many studies find evidence of reduction in working hours

due to increased pollution levels (e.g. Hanna and Oliva (2015); Hansen and Selte (2000)).

In Lima, the capital city of Peru, Aragón et al. (2017) find that the impact is significantly

larger at higher levels of pollution but is concentrated among households with susceptible

dependents (i.e. small children and elderly adults) at moderate levels of pollution. This is

consistent with evidence from the United States that finds exposure to air pollution increases

student absenteeism by increasing cases of acute asthma (Komisarow and Pakhtigian, 2022).

To the extent that workers have care-giving responsibilities for school children or the elderly,

increases in acute incidents among these populations may translate into reductions in labor

supply among the working age population.

Pollution may also impact medium-run labor supply decisions by inducing migration.

Chen et al. (2017) suggest that air pollution is responsible for large changes in inflows and

outflows of migration in China, and the reduction of the overall population through net out-

migration by 5 percent in a given county. Khanna et al. (2021) find that pollution in China

has larger effects on highly skilled workers, who are more likely to emigrate, generating large

productivity impacts. Gao et al. (2023) find that migration decisions are highly responsive

to an unexpected disclosure of pollution information. Pan (2023) finds that families relocate

to cleaner counties after adults receive asthma diagnoses. If air pollution induces workers

to migrate away from high productivity areas to lower productivity areas even internal

migration may have impacts on GDP.

Air pollution not only impacts labor supply but can also impact workers’ performance at

the workplace. A substantial literature provides evidence of impaired cognitive and physical

functions due to increased PM2.5 levels (Aguilar-Gomez et al., 2022). Chang et al. (2016)

study the effect of outdoor air pollution on the productivity of indoor workers at a pear-

packing factory in Northern California. They find that a 10-unit change in PM2.5 decreases

worker productivity by roughly 6 percent at pollution levels well below current US air quality

standards. Adhvaryu et al. (2019) study the effects of PM2.5, measured at the hourly level

5In the long-run air pollution can reduce labor supply by changing the size of the workforce either
through increased deaths (Pandey et al., 2021), reduced live births (McDuffie et al., 2021), or increased net
out-migration (Chen et al., 2022; Khanna et al., 2021)

5



at multiple locations in an Indian garment factory, on production. Their estimates imply a

roughly 0.3 percent decline in productivity (as measured by the number of garments sewn

per hour) for every 10µg/m3 increase in PM2.5, with larger effects for more complex tasks

and older workers.

Pollution impacts performance in more sectors than physically demanding activities in

manufacturing. It also affects workers’ ability to perform cognitive tasks. Exposure to PM2.5

can impact decision making, educational outcomes, and productivity by impairing cognitive

function and altering emotional states (Aguilar-Gomez et al., 2022). Chang et al. (2019)

investigate the effect of pollution on worker productivity in the service sector by focusing

on two call centers in China. They find that a 10-unit increase in the air pollution index

decreases the number of daily calls by 0.35 percent, an effect that appears to occur through

longer employee breaks. Heyes et al. (2016) find a significant negative impact of PM2.5 on

S&P 500 returns – a one standard deviation increase in PM2.5 reduces same day returns

by nearly 12 percent, an effect likely to be driven by decreased risk tolerance operating

through pollution-induced changes in mood or cognitive function. There is a rich literature

that documents student performance on exams is negatively affected by air pollution (Levy

et al., 2020; Wen and Burke, 2022). Reductions in student performance may not impact

contemporaneous economic activity but provides additional evidence for cognitive effects of

air pollution and indicates that pollution may have long-run consequences for growth.

Higher levels of pollution also impact economic output through channels other than labor

supply or productivity. These include reductions in crop yields, reductions in solar energy

output, and allocation inefficiencies as funds may be diverted towards pollution-related dam-

age reduction activities, among others (Deschenes et al., 2017). High concentrations of pol-

lution particles can reduce the intensity of the sun’s radiation reaching the Earth, decreasing

direct radiation and increasing diffuse radiation. This can reduce crop yields (Burney and

Ramanathan, 2014b; Behrer and Wang, 2022). Zhou et al. (2018) finds that PM2.5 concen-

trations reduce average yields of wheat and corn in China. Gupta et al. (2017) assess the

impact of global warming and local air pollution in India by analyzing the data of more

than 200 district over 1981-2009. Their finding suggests that for a one-standard-deviation

decrease in aerosol optical depth, wheat yields increase by about 4.8 percent.6

Reductions in the intensity of solar radiation may also impact solar generation. A recent

study by Ghosh et al. (2022) finds that reductions in pollution could enhance India’s annual

solar production by 6-28 terawatt-hours of electrical energy, which translates to economic

6Aerosol optical depth (or AOD) is a measure of the number of particles in a column of the atmosphere
beginning at the surface and extending to the edge of the atmosphere. Lower AOD is correlated with lower
levels of particulate pollution at the surface.
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benefits of USD325 million to USD845 million every year. Similar effects have been docu-

mented in eastern China (Li et al., 2017). These reductions may be driven by changes in the

amount of radiation reaching the surface or by deposition of particulate matter on the solar

panels, further blocking sunlight.

Model based approaches to estimating the impact of air pollution on GDP growth are

an alternative to the quasi-experimental approach employed by many of the papers above

and that we employ. Model based approaches start with measured GDP and attempt to

aggregate all of the costs of air pollution and then subtract these costs from measured GDP

and calculate a pollution inclusive measure of growth. This approach is well represented by

Mohan et al. (2020) who estimate how incorporating damages from air pollution changes

GDP levels in 163 countries. Their approach models the damages from pollution that occur

across the economy – what they term gross environmental damage (GED) – and subtracts

those damages from GDP to arrive an estimated “environmentally-adjusted value added”

(EVA). This approach provides an estimate of the extent to which economic activity is

drawing down stocks of natural capital (i.e. clean air) and is important for assessing whether

economic growth is occurring sustainably. They find that over the last several decades India’s

EVA growth has been approximately 50 basis points lower than measured GDP growth.

Our approach differs as we do not attempt to explicitly estimate the full set of damages

that air pollution can cause individually or in aggregate. Rather, we assume that the damage

caused by year-to-year changes in air pollution will manifest as year-to-year changes in GDP.

That implies that measured year over year GDP growth will be lower in years with higher

levels of air pollution than it would have been absent the damages from air pollution.7 Note

that this measure will be inclusive of intra-annual adaptation measures taken to reduce the

impact of air pollution on economic activity (e.g. shifting work from high pollution to low

pollution days). Crucially, to the extent that air pollution has long-term effects on GDP

growth (i.e. if it reduces future growth by reducing human capital formation in school aged

children today) we will not detect these effects with our approach.

3 Data

3.1 GDP data

We compile real district GDP using officially published reports by state governments and

CEIC (a data platform that compiles data from various official sources). The series is

7Note, we are not estimating the effect of pollution on long-run average growth rates, rather our outcome
is the year-to-year change in GDP in percentage terms.
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available for three different base years (1999-00, 2004-05, and 2011-12) starting from the

fiscal year 1999-2000 until the most recently available. Given the three different base years,

we construct a spliced growth rate series. The spliced GDP series is constructed by using

the real GDP growth rate as implied by the latest base year; for instance, if the 2011 growth

rate is available under both 2004-05 and 2011-12 base year, we use growth rate based on the

2011-12 base year. We have data for approximately 550 districts (covering around 25 states

and union territories) with each having, on average, 15 observations. The available district

data accounts for, on average, more than 90 percent of the respective states’ GDP and based

on 2015 levels, these states and union territories contribute 90 percent of India’s real GDP.

The real GDP growth rate has averaged 6.9 percent over 2000-2019 for the 550 districts

covered in the sample with a standard deviation of 7.2 percent (Table 1). We winzorize our

GDP growth data at the 1st and 99th percentile. This eliminates 34 observations where the

absolute growth rate exceeds 50 percent.

3.2 Inversions

To measure inversions we use data from the Modern-Era Retrospective analysis for Research

and Applications (MERRA) database provided by NASA (Rienecker et al., 2011). This is

a satellite based reanalysis product that provides data on temperature at each of 42 atmo-

spheric levels on a 0.5◦×0.625◦ grid.8 We collect the daily aggregate mean of temperature for

the first 19 levels of the atmosphere. This roughly corresponds to the levels beginning at the

surface and extending 5km into the atmosphere.9 Because MERRA indexes layers based on

pressure levels, rather than consistent elevation thresholds we calculate surface temperature

individually for each grid-point×day based on the temperature reported at the lowest level

for that grid-point×day. We set this layer as the surface and calculate temperatures in the

layers counting up from the surface layer.

We aggregate our grid-point×day temperatures to the district level by taking the weighted

average across grid-points for each day with weights defined as the total population in each

grid-point’s unique catchment area.10 We assign grid-points to the districts that contain

them. For districts that do not contain any grid-points we use the nearest grid-point to the

center of the district. We then calculate whether a district experiences an inversion on a

given day based on the district×day temperature at each atmospheric level.

We use two different measures of inversions. The first considers the difference between

8Data available here: https://disc.gsfc.nasa.gov/datasets/M2I3NPASM_5.12.4/summary?

keywords=M2I3NPASM
9The actual height varies with surface elevation and day-to-day changes in surface pressure.

10Catchment areas are the area around each grid-point that is closer to that grid-point than any other
grid-point.
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the surface temperature and the temperature in each of the two layers immediately above

the surface. If the surface temperature is lower than the temperature in either the first layer

or the second layer we classify that day as experiencing an inversion. The second compares

surface temperature to the temperature in all the layers in our sample. Again, if surface

temperature is lower than the temperature in any of these layers we classify that day as

experiencing an inversion. We also split inversions into winter and summer inversions as

meteorological conditions and the emissions of pollutants vary across seasons. In general

winter inversions have a larger impact on pollution levels (for example because there are

more emissions from burning for heating in the winter which can be trapped by inversions).

We count the number of days with inversions in each district and year or season and calculate

the share of days each district experienced an inversion in the whole year as well as separately

by winter and summer. We also measure the strength of each inversion as the difference in

temperature between the higher and lower layer on days when there is an inversion. Larger

differences indicate stronger inversions (Chen et al., 2022). For each district and year or

season we calculate the average inversion strength averaging across all inversions that occur

in the relevant time period.

3.3 Meteorological controls

We collect weather re-analysis data from ERA5. ERA5 is produced by the European Com-

mission’s Copernicus Climate Change Service.11 We use data from the ERA5 Land hourly

product. This provides data at an hourly level on a grid of 0.1◦×0.1◦, which translates to a

9km resolution over India. We use data on temperature, dew point, surface pressure, wind

direction, wind speed, and precipitation over the full sample. We calculate relative humidity

from dew point, temperature and surface pressure. We aggregate these weather variables to

the district level by averaging over all grid-points that fall within a district boundary using

the same population weighting we use to calculate inversions.

3.4 Air pollution data

We use pollution data from the global data produced by the Van Donkelaar research group

(Van Donkelaar et al., 2019). This provides monthly average pollution levels on a 0.01◦×0.01◦

grid covering the entire planet from 1998 to 2020. We calculate annual average pollution in

Indian districts by assigning grid-points to their respective district and then averaging across

all grid-points within a district in each month. We weight grid-points by the population

11Data available here: https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis-era5-
land?tab=overview
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within its unique catchment area. We then average across district months within each

Indian fiscal year, running from April to March.

4 Empirical approach

We estimate the impact of pollution exposure on GDP growth with an instrumental variables

model instrumenting for pollution with seasonal inversions. Inversions result in plausibly

exogenous changes in pollution at the surface conditional on surface weather conditions. To

isolate the impact on pollution of the inversions we control flexibly for a wide range of surface

level weather conditions.12

We estimate a first differences model so all of our variables are measured as the change

from year-to-year within a district. For notational simplicity we omit the difference indi-

cators below. All of our inversion and meteorological variables are measured as district

level weighted averages where we weight the values at each grid cell within a district by the

population surrounding that grid cell.

We estimate the following system of equations:

Avg. PM2.5 Conc.iy = ψ1Winter Inversionsiy × ψ1Winter Inversion Strengthiy

+ψ3Summer Inversionsiy × ψ4Summer Inversion Strengthiy

+δXiy + ηy + ϵi

(1)

GDP changeiy = β ̂Avg. PM2.5 Conc.iy + ϕXiy + κy + µi (2)

where we instrument for the annual average PM2.5 concentration in district i and year y with

the number of winter and summer inversions and the average strength of these inversions

in district i and year y. The strength of inversion is measured as the average temperature

difference across the inverted layers when there is an inversion (Dechezleprêtre et al., 2019;

Chen et al., 2022). Equation 2 takes our predicted average PM2.5 concentration and regresses

it on the change in GDP growth in district i and year y. β describes how a change in our

predicted level of PM2.5 changes GDP growth. In all specifications we includeXiy, a vector of

meteorological controls measured at the surface. We follow Dechezleprêtre et al. (2019) and

this vector controls for the number of days in one of fifteen precipitation bins, the number

of days the average temperature is in one of twenty-five bins, a second order polynomial

12We do not control for surface level fog directly. We are unaware of any data on fog incidents that
comprehensively covers the geographic and temporal span of our data. Further, research on the occurrence
of fog over northern India finds that measures of relative humidity and wind speed, which we include in our
broad set of weather controls, provide a close approximation of more detailed models of fog incidents (Singh
et al., 2018).
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of relative humidity and surface pressure, four wind speed bins, and interactions of relative

humidity and the square of relative humidity with all of our temperature bins. We include

year fixed effects (ηy&κy) in all regressions and because we estimate a first differences model

it implicitly includes district fixed effects. We cluster errors at the district level which is the

level that our outcomes and instrumental variables vary.

5 Results

Air pollution in India over our sample period is concentrated in the northwest and along the

Indo-Gangetic plain (Figure 3a). In the districts in these areas the annual average pollution

level can exceed the WHO recommended limits by more than ten times. But in even the least

polluted districts the average annual exposure is above the average level of exposure typically

experienced in wealthier countries. In the areas most exposed to pollution, exposure levels

are substantially higher than in wealthier countries, with average exposure around 50µg/m3

annually (Table 1).

Exposure to PM2.5 in India has increased significantly over time as well. During our

sample period average exposures have increased by more than 50 percent, from approximately

35µg/m3 to more than 55µg/m3 (Figure 2). The impact of COVID19 lock-downs on pollution

is visible as a notable decline in average pollution levels at the end of our sample period.

We see no trend in inversions over our sample period (Figure 4). There is a small spike in

the final years of our sample but on average slightly less than 20 percent of days experience an

inversion across all the districts in our sample. There are more inversions during the winter,

with roughly 25 percent of winter days experiencing an inversion, and correspondingly fewer

during the summer months.

5.1 First stage

Our measure of seasonal inversions appears to be highly predictive of pollution levels over

our sample period. We show (Table 2) that a hypthetical year in which every winter day

had an inversion would have pollution levels that are roughly 2.5µg/m3 higher than a year

with no inversions. That represents a roughly 5 percent increase in annual average PM2.5

levels from the mean. On average across the whole sample, 26% of winter days experience

an inversion.

Summer inversions do not appear to have a meaningful impact on annual pollution levels.

This could be due to differences in other meteorological conditions during the summer, for

example increased monsoon rainfall that reduces pollution levels, or because there are fewer
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sources generating pollution (e.g. less wood-smoke from heating) to be trapped by inversions

that occur during the summer. Regardless, we show that omitting the summer inversions

does not appear to impact the predictive ability of winter inversions (Table 2, Columns 2-3).

One might be concerned that the predictive power of our inversions instrument is due to

some artefact of the construction of our measures of pollution. These are based on satellite

measurements but also include inputs from dispersion modeling. To alleviate this concern

we conduct the following robustness check. For 21 cities around India we download data

on daily pollution levels from the Indian Central Pollution Control Board from 2015 to

2020. This gives us an unbalanced panel of pollution (due to missing data) at the daily level

across these cities. We then use our weather data to construct daily measures of inversions

and ground level weather controls for each of these cities. We test whether our measure of

inversions successfully predicts higher levels of pollution in these cities using this pollution

dataset that is unrelated to our primary pollution data. We find that a day with an inversion

leads to PM2.5 levels that are roughly 5% (t-stat: 1.91) higher relative to the mean. This

test, using daily data distinct from our primary pollution data suggests that the inversion

instrument is both a good predictor of higher pollution levels and that this predictive power

comes from true impacts in the real world rather than because of any feature of the pollution

data construction.

5.2 Second stage

Our results indicate that higher levels of pollution result in smaller year-to-year changes

in GDP. We find, instrumenting for pollution levels with the number of inversions during

the fiscal year, a 1µg/m3 year-to-year increase in PM2.5 pollution reduces the year-to-year

change in GDP by 0.7 percentage points (Table 3). In our sample the median year-to-year

change in pollution is 0.8µg/m3 and the median year-to-year change in GDP is 6.4 percent.

Our results imply that in a year where pollution levels fell by 1µg/m3 relative to the

prior year – a change opposite signed than the median change we observe in our data – year

over year GDP change would be 7.1 percent rather than 6.4 percent. In standard deviation

terms, a decrease in pollution levels of 1 standard deviation of the typical change would

result in an increase in the year over year GDP change of 0.4 standard deviations.

A 1µg/m3 change in annual average PM2.5 relative to the prior year may not seem

large, especially relative to the size of our estimated GDP effects. That is a mis-perception.

A 1µg/m3 change in the average annual level of pollution implies large changes in daily

pollution levels. To see this consider the following example. Assume that a given Indian

district experienced daily PM2.5 levels exactly equal to the annual national average for each
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day in a year. In that case, a 1µg/m3 increase in the annual average in the next year would

be equivalent to increasing the daily average by 30% for an entire month. That is, a 1µg/m3

increase in the annual average is the difference between a month with daily exposure of 54

µg/m3 and one with daily exposure of 70 µg/m3. Or consider the level of PM2.5 measured

at the U.S. Embassy in Delhi in 2015. The annual average daily level was 170µg/m3 for

2015 with the daily average during November and December, the two worst months of the

year, at 287µg/m3. A 1µg/m3 reduction in the annual average level would have been akin

to reducing the peak during November and December by ≈ 10%.

Our results indicate that higher levels of pollution have negative consequences for eco-

nomic activity that are felt in the short-run, consistent with much of the existing micro-

evidence on the consequences of exposure to air pollution. These negative micro conse-

quences appear to accumulate in ways that reduce activity across the economy, resulting

in less activity relative to a counter-factual in which pollution exposure was lower. This

reduction in activity results in lower rates of year over year change in GDP.

5.3 Robustness

Our results are robust to a variety of sensible specification variations and alternative cluster-

ing. We show (Table 5) that omitting the measure of inversion strength does not substantially

change our results - in fact it slightly increases our point estimates. Nor does using total

inversions over the whole year rather than dividing them into seasons.

To account for potential spatial correlation in weather patterns or pollution we also

cluster errors at the state, rather than district level. This substantially reduces the number

of clusters, from 515 to 23. Unsurprisingly this reduces our precision but our estimates

remain significant at the 5 percent level.

We also test alternative sets of weather controls (Appendix Figure A1). In general our

results remain very stable across a wide variety of combinations of our base weather controls.

These include specifications that omit all controls except for precipitation, omit all but

controls for average temperature, and define temperature as the maximum rather than the

average.

To test for robustness against weak instruments we estimate a LIML version of our IV

approach (Appendix Table A2). LIML models have been shown to be more robust to weak

instruments than 2SLS (Stock and Yogo, 2002). Our results do not change when estimated

with the LIML, rather than 2SLS approach.

The reduction in GDP due to higher levels of pollution may be offset by increases in

GDP in the following year if the impacts are due to temporary reductions, for example,
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in labor supply that are offset by subsequent increases in labor supply. To test for such a

rebound we examine the impact of changes in pollution in a lagged framework (Table 4).

Including one lag makes our point estimates of the contemporaneous impact slightly smaller.

Two lags moves it close to zero, as does three. The sum of the lags is never significant

but including up to two lags the point estimate on the sum of the lags remains close to

our original point estimates. Adding a third lag substantially reduces the point estimate,

suggesting a 1 µg/m3 increase in pollution leads to a net 0.2 percentage point reduction in

year-to-year GDP growth over three years, but it remains negative.

We also examine how the impacts of pollution vary by the size of the change in pollution

levels from year-to-year and by baseline levels of pollution. In both cases we find no evidence

for substantial differences across quartiles of the distribution. Over the empirical support

in our data we cannot reject the null that the impact of changes of pollution is linear in

the size of the change. However, we note that the empirical support in our data is small

relative to the average annual level of pollution in India. The inter-quartile range in the

year-to-year change is -1.01 to 2.76. Our results do not support the conclusion that the

effect of reductions in pollution levels substantially outside of this range would continue to

be linear. Further, we cannot reject the null that the impact of year-to-year changes in

pollution on year-to-year GDP growth is invariant to baseline levels of pollution. However,

we find weak evidence that the effect of pollution on changes is GDP is most pronounced at

higher baseline levels of pollution. Both of these results are somewhat counter-intuitive and

we note that a necessary feature of conducting this analysis with our data is a substantial

reduction in sample size. We leave additional examination of these important questions to

future work.

6 Discussion and conclusion

Our IV results indicate that higher levels of air pollution reduce year-to-year GDP growth.

These results are consistent with estimates of the impact of air pollution on GDP growth

from Europe and the United States as well as the well-identified micro-level estimates of

the negative impacts of air pollution. Air pollution has a variety of negative impacts on

workers and economic sectors that manifest at the macro level in the form of reductions in

economic growth. The most obvious mechanisms through which air pollution affects year-

to-year changes in GDP are that pollution reduces worker productivity on the job, increases

worker absenteeism due to illness, and directly harms agricultural productivity. In the long

run reductions in human capital formation and migration away from the most economically

productive areas due to pollution exposure loom large (Wen and Burke, 2022).
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Our effect is roughly the same size as that found in Dechezleprêtre et al. (2019). This

is somewhat surprising given the dramatically higher levels of ambient pollution in India

when compared to Europe. On average, in their sample, the population faces annual average

exposure of 10µg/m3 compared to average exposures of 50µg/m3 in our sample. But our

effects are roughly double those found in Avila Uribe (2023), more consistent with the

hypothesis that higher levels of exposure may lead to more severe impacts.

The effects of these differences in ambient concentrations are likely exacerbated by differ-

ences in the sources of economic activity between India and Europe and the United States,

and the implied differences in vulnerability to air pollution. Data from the Reserve Bank

of India suggests that as much of 50 percent of India’s GDP comes from sectors that are

exposed to heat - a rough approximation for the share of GDP generated by outdoor work.

This is compared to less than 25 percent of European GDP generated by the same sectors

based on European Central Bank figures.

Indian workers work in an environment with substantially higher levels of ambient pollu-

tion than European workers and a substantially larger share of Indian GDP is generated by

workers who are likely to be frequently working in conditions – outside – that expose them

to ambient pollution. Both of these facts suggest that the impact of increases in pollution

on GDP should be larger in India than Europe.

On the other hand, recent work examining the mortality impacts of very high levels of air

pollution using exposure to wildfire smoke in the United States suggests a strongly concave

dose-response function for air pollution exposure (Miller et al., 2017). While small changes

in pollution have large mortality effects at low levels of pollution, similarly small changes at

higher levels of pollution have much smaller effects. This is supported by work examining

the consequences of exposure to pollution on outdoor workers around the world that finds a

similarly concave dose-response function (Burnett et al., 2018). It remains an open question

how this dose response function for mortality translates for other outcomes but our results

are consistent with the pattern being similar for labor productivity effects, for example.

Our point estimates are small relative to the overall variation in economic growth from

year-to-year and across districts in our sample. A 1µg/m3 year-to-year increase in PM2.5

pollution, roughly 25 percent larger than the median change in our sample, reduces year-to-

year GDP growth by 0.16 of a standard deviation. This effect is economically meaningful

but small relative to secular changes in GDP growth.

We can further benchmark our results against estimates of the direct impacts of air pollu-

tion in India on the mortality and morbidity of Indian citizens. Pandey et al. (2021) employ

the methodology from the Global Burden of Disease to estimate how exposure to air pollu-

tion impacts mortality and morbidity in India. They find that the monetized reductions in
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mortality and morbidity amount to a loss of 36.8 billion ($USD) annually based on exposure

levels in 2019.13 They also find large inter-state variation in economic loss as a proportion of

the state GDP, ranging from 0.67 percent to 2.15 percent, with the highest losses observed

in the low per-capita GDP states of Uttar Pradesh, Bihar, Rajasthan, Madhya Pradesh,

and Chhattisgarh. Indian GDP grew 6.26 percent from 2.7 trillion ($USD) in 2018 to 2.9

trillion in 2019. The monetized value of the mortality and morbidity costs suffered in 2019

amounts to 21.3 percent of this year over year growth. In contrast, the year-to-year change

in pollution from 2016 to 2017 reduced GDP in 2017 by approximately 13 billion $USD, or
roughly a third of the monetized losses from mortality and morbidity.

It is tempting to use our results to estimate how substantial reductions in pollution

levels in India would impact its growth rate. For example, how reducing the average level of

PM2.5 from 55µg/m3 to the European average of approximately 10µg/m3 would impact GDP

changes. Using our results in this way would be inappropriate. The effects we estimate are

not calculated in a way that enables this exercise for several reasons. First, our estimates are

based on generally small year-to-year fluctuations in PM2.5 levels. We do not observe changes

in our data that are of comparable magnitude to halving pollution in India. Second, although

our estimates appear to be linear in the range of data we observe there are likely to be

substantial non-linearities in the relationship between GDP growth and changes in pollution

levels as the changes in pollution increase in magnitude. This is what we observe in the

relationship between pollution exposure and mortality (Burnett et al., 2018). Extrapolation

of our linear estimates fails to account for these non-linearities. Third, reductions in pollution

of that magnitude may be accompanied by substantial changes to the make-up of the Indian

economy. Recent work suggests that India will be unable to halve current pollution levels on

its own. Rather regional cooperation will be required to achieve such reductions.(The World

Bank, 2022). It is unlikely that the relationship we document here will remain the same in

an economy that undergoes such changes.

A more reasonable comparison is to ask what the level of Indian GDP would be today

if the average year-to-year change in PM2.5 pollution had been half what we observe in the

data. We show the results of that exercise in Figure 5. We do the following. Starting with

the observe level of pollution in 1998 we assume that instead of growing at the actual rate

over the sample period, pollution grows at 0.4µg/m3 less each year. That represents roughly

a 50% reduction in the average year-to-year change. As we show in Panel A of Figure 5,

that results in pollution levels that are just over 10% lower at the end of the period relative

13This study use a broader definition of air pollution including ambient particulate matter pollution,
household air pollution, and ozone concentration. However, the number of deaths attributable to ambient
particulate matter constitute the majority (59 percent), followed by household air pollution (37 percent) and
ozone concentration (4 percent).
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to what was actually observed. We then calculate, based on our estimated coefficients and

this lower assumed rate of change in year-to-year PM2.5 what the additional growth would

have been in each year over the sample period. As we show in Panel B of Figure 5 these

small changes accumulate over time, such that by the end of the sample period we estimate

that Indian GDP would have been 4.51% higher by the end of the period if pollution had

grown 50% more slowly in each year.

Our results provide evidence that the well-documented micro-level impacts of air pollution

on health, productivity, labor supply, and other economically relevant outcomes aggregate

to macro level effects that can be observed in year-to-year changes in GDP. These results

are consistent with the fact that similar micro-effects of heat have been well-documented to

generate aggregate level effects. They are also consistent with the evidence of the impacts

of air pollution on GDP changes in Europe. While our results cannot be used to provide

precise estimates of the benefits of large reductions in pollution in India they provide strong

evidence that reducing pollution levels, all else equal, can have positive impacts on GDP.
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7 Tables and Figures

7.1 Tables

Table 1: Summary statistics

Mean SD Min Max

Annual averages of pollution & growth
Annual average PM 2.5 51.39 25.68 8.62 128.94
Annual GDP growth (%) 6.95 7.90 -16.34 36.46

Annual averages of weather measures
Annual temperature 25.37 2.87 -6.45 29.83
Annual precipitation 1,325.93 781.49 65.31 5,711.34
Annual dew point 17.76 3.17 -11.21 24.32
Annual relative humidity 67.20 8.59 41.52 86.68

Inversions
Share of days with a low inv 0.17 0.14 0.00 0.58
Share of days with any inv 0.17 0.14 0.00 0.58
Share with winter inversion 0.26 0.25 0.00 0.95
Share with summer inversion 0.07 0.08 0.00 0.43

Notes: All statistics are reported for the districts in our sample. All variables are population weighted
averages calculated at the district level. Low inversions are days with an inversion only in the first two
layers of the atmosphere. Any inversion is a day with an inversion in any layer below 5km above the
surface.
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Table 2: First stage

Mean PM2.5 Mean PM2.5 Mean PM2.5

Winter inversion, low 2.3865∗∗∗ 2.4005∗∗∗

(0.4930) (0.4931)
Summer inversion, low -1.2599 -1.5167

(1.4048) (1.4015)
N 8,823 8,823 8,823

Relative Effects:
100% winter days as inversion→X% ∆PM2.5 5.16 5.13

F-test of inversions: 12.47 23.70 1.17

Weather controls:
Temperature Y Y Y
Precipitation Y Y Y
Relative humidity Y Y Y
Surface pressure Y Y Y
Wind speed Y Y Y
Wind direction Y Y Y

Fixed effects:
Fiscal year Y Y Y

Notes: The outcome is the first difference within a district of the annual average of PM2.5 measured at the district
level during a fiscal year from April to March and weighted by population. Pollution data comes from the Van
Donkelaar group. Inversion data comes from the MERRA re-analysis data and measures the incidents when temper-
ature at atmospheric levels above the surface is higher than at the surface by district for each fiscal year. Inversions
are measured as the share of days with an inversion. Inversions are calculated comparing surface temperature to
temperature in the two levels immediately above the surface. If either of these levels has a higher temperature than
the surface we define it as an inversion. Winter refers to inversions between October and March. Summer refers to
inversions between April and September. All inversion data and weather controls are population weighted averages
across districts. The unit of observation is the district year. In all columns we control for the first difference of the
number of days in one of fifteen precipitation bins, the number of days the mean temperature is in one of twenty-five
bins, a second order polynomial of relative humidity and surface pressure, four bins of wind speed, ten wind direction
bins, and interactions of relative humidity and the square of relative humidity with all of our temperature bins. All
columns include fiscal year fixed effects. In all columns we cluster standard errors at the district level. (* p<.10 **
p<.05 *** p<.01).
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Table 3: IV results

Inversions in first two layers

Mean PM2.5 -0.0075∗∗

(0.0033)
N 6,142

Relative Effects:
1SD↑PM2.5→“X”SD∆GDP change -0.41

Kleibergen-Paap rk Wald F statistic: 5.92

Weather controls:
Temperature Y
Precipitation Y
Relative humidity Y
Surface pressure Y
Wind speed Y
Wind direction Y

Fixed effects:
Fiscal year Y

Notes: The outcome is the first difference within a district of the log of annual GDP measured at the district level.
We instrument for annual average of PM2.5 measured at the district level during a fiscal year from April to March and
weighted by population with inversions and inversion strength. Pollution data comes from the Van Donkelaar group.
Inversion data comes from the MERRA re-analysis data and measures the incidents when temperature at atmospheric
levels above the surface is higher than at the surface by district for each fiscal year. Inversions are measured as the
share of days with an inversion. Inversion strength is the average difference in temperature when there is an inversion.
All inversion data and weather controls are population weighted averages across districts. The unit of observation is
the district year. In all columns we control for the first difference of the number of days in one of fifteen precipitation
bins, the number of days the mean temperature is in one of twenty-five bins, a second order polynomial of relative
humidity and surface pressure, four wind speed bins, ten wind direction bins, and interactions of relative humidity
and the square of relative humidity with all of our temperature bins. All columns include fiscal year fixed effects. In
all columns we cluster standard errors at the district level. We winsorize GDP growth at 1%. (* p<.10 ** p<.05 ***
p<.01).
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Table 4: Lagged IV results

No lags 1 lag 2 lags 3 lags

Mean PM2.5 -0.0075∗∗ -0.0066∗ 0.0022 0.0009
(0.0033) (0.0036) (0.0029) (0.0032)

N 6,142 5,628 5,114 4,596

Sum of lags -0.008 0.009 -0.002
(0.006) (0.009) (0.010)

Weather controls:
Temperature Y Y Y Y
Precipitation Y Y Y Y
Relative humidity Y Y Y Y
Surface pressure Y Y Y Y
Wind speed Y Y Y Y
Wind direction Y Y Y Y

Fixed effects:
Fiscal year Y Y Y Y

Notes: The outcome is the first difference within a district of the log of annual GDP measured at the district level.
We instrument for annual average of PM2.5 measured at the district level during a fiscal year from April to March and
weighted by population with inversions and inversion strength. Pollution data comes from the Van Donkelaar group.
Inversion data comes from the MERRA re-analysis data and measures the incidents when temperature at atmospheric
levels above the surface is higher than at the surface by district for each fiscal year. Inversions are measured as the
share of days with an inversion. Inversion strength is the average difference in temperature when there is an inversion.
All inversion data and weather controls are population weighted averages across districts. The unit of observation is
the district year. In all columns we control for the first difference of the number of days in one of fifteen precipitation
bins, the number of days the mean temperature is in one of twenty-five bins, a second order polynomial of relative
humidity and surface pressure, four wind speed bins, ten wind direction bins, and interactions of relative humidity
and the square of relative humidity with all of our temperature bins. All columns include fiscal year fixed effects. In
all columns we cluster standard errors at the district level. We winsorize GDP growth at 1%. (* p<.10 ** p<.05 ***
p<.01).
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Table 5: IV results, robustness checks

Omitting strength Non-seasonal inversion State clustering Without winsored 1 inversion Any layer

Mean PM2.5 -0.0090∗ -0.0094 -0.0075∗∗ -0.0085∗∗ -0.0100∗∗∗ -0.0168∗∗∗

(0.0050) (0.0062) (0.0032) (0.0037) (0.0038) (0.0062)
N 6,142 5,575 6,142 6,069 4,455 6,142

Weather controls:
Temperature Y Y Y Y Y
Precipitation Y Y Y Y Y
Relative humidity Y Y Y Y Y
Surface pressure Y Y Y Y Y
Wind speed Y Y Y Y Y
Wind direction Y Y Y Y Y

Fixed effects:
Fiscal year Y Y Y Y Y

Notes: The outcome is the first difference within a district of the log of annual GDP measured at the district level.
We instrument for annual average of PM2.5 measured at the district level during a fiscal year from April to March and
weighted by population with inversions and inversion strength. Pollution data comes from the Van Donkelaar group.
Inversion data comes from the MERRA re-analysis data and measures the incidents when temperature at atmospheric
levels above the surface is higher than at the surface by district for each fiscal year. Inversions are measured as the
share of days with an inversion. Inversion strength is the average difference in temperature when there is an inversion.
All inversion data and weather controls are population weighted averages across districts. The unit of observation is
the district year. In all columns we control for the first difference of the number of days in one of fifteen precipitation
bins, the number of days the mean temperature is in one of twenty-five bins, a second order polynomial of relative
humidity and surface pressure, four wind speed bins, ten wind direction bins, and interactions of relative humidity
and the square of relative humidity with all of our temperature bins. All columns include fiscal year fixed effects. In
all columns we cluster standard errors at the district level. We winsorize GDP growth at 1%. (* p<.10 ** p<.05 ***
p<.01).
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7.2 Figures

Figure 1: Example of an inversion

Notes: Inversions occur when temperature at an atmospheric level above the surface has
a higher temperature than the surface. This traps air at the surface and generally raises
pollution. These are the temperature profiles on two days in Mumbai in November 2005.
In the dark line we show the temperature profile at atmospheric levels moving up from the
surface on a day without an inversion (surface=level 0). Temperature declines monotonically
as the atmospheric level increases. In the grey line we show the same profile on a day with an
inversion. The clear spike in temperature at the level just above the surface is the signature
of an inversion.
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Figure 2: National average PM2.5 level over time

Notes: Weighted average PM2.5 (µg/m3) with averages calculated across districts in each
fiscal year. District level averages are calculated by averaging across grid-points within the
district and weighting each grid-point by the population of the surrounding area.
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Figure 3: Geographic distribution of key variables

(a) Pollution (b) Inversions (c) GDP growth

Notes: Panel A shows the average by district of the annual level of PM2.5 pollution (µg/m3 by district across all years in
our sample (2000-2018). Panel B shows the average share of days (0-100 percent) in a year that each district experiences an
inversion over the same time period. Panel C shows annual GDP growth rates (0-100 percent). Blank districts are those for
which we do not have GDP growth data. In all figures darker hues indicate higher values.
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Figure 4: Share of inversions over time

Notes: Inversions vary from year-to-year with more inversions occurring in the winter than
in the summer because of differences in the angle of the sun. We show the average share of
days with an inversion in each year of our sample here averaging across all the districts that
are in our regression sample (i.e. those for which we have GDP data).
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Figure 5: Projected pollution and GDP assuming lower pollution growth

(a) Pollution growth

(b) GDP growth

Notes: Panel A shows the observed (solid line) growth in PM2.5 over our sample period and
the projected level (dashed line) assuming that the year-to-year change was half of what we
observe in the data. Panel B shows the actual growth of Indian GDP (solid line) and the
projected growth if PM2.5 changes had been lower (dashed line).
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Appendix 1 Additional Tables

Table A1: First stage, all levels

Mean PM2.5 Mean PM2.5 Mean PM2.5

Winter inversion, any 2.2200∗∗∗ 2.2313∗∗∗

(0.5449) (0.5454)
Summer inversion, any -1.1345 -1.2749

(1.1784) (1.1773)
N 8,823 8,823 8,823

Relative Effects:
100% winter days as inversion→X% ∆PM2.5 5.54 5.52

F-test of inversions: 9.05 16.74 1.17

Weather controls:
Temperature Y Y Y
Precipitation Y Y Y
Relative humidity Y Y Y
Surface pressure Y Y Y
Wind speed Y Y Y
Wind direction Y Y Y

Fixed effects:
Fiscal year Y Y Y

Notes: The outcome is the first difference within a district of the annual average of PM2.5 measured at the district
level during a fiscal year from April to March and weighted by population. Pollution data comes from the Van Donke-
laar group. Inversion data comes from the MERRA re-analysis data and measures the incidents when temperature
at atmospheric levels above the surface is higher than at the surface by district for each fiscal year. Inversions are
measured as the share of days with an inversion. Inversions are calculated comparing surface temperature to tem-
perature in all levels below 5 km above the surface. If any level above the surface has a higher temperature than
the surface we define it as an inversion. Winter refers to inversions between October and March. Summer refers to
inversions between April and September. All inversion data and weather controls are population weighted averages
across districts. The unit of observation is the district year. In all columns we control for the first difference of the
number of days in one of fifteen precipitation bins, the number of days the mean temperature is in one of twenty-five
bins, a second order polynomial of relative humidity and surface pressure, four bins of wind speed, ten wind direction
bins, and interactions of relative humidity and the square of relative humidity with all of our temperature bins. All
columns include fiscal year fixed effects. In all columns we cluster standard errors at the district level. (* p<.10 **
p<.05 *** p<.01).
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Table A2: LIML results

Inversions in first two layers Inversions in any layer

Mean PM2.5 -0.0076∗∗ -0.0084∗∗

(0.0033) (0.0041)
N 6,142 6,142

First stage F-stat: 6.07e+06 4.66e+06

Weather controls:
Temperature Y Y
Precipitation Y Y
Relative humidity Y Y
Surface pressure Y Y
Wind speed Y Y
Wind direction Y Y

Fixed effects:
Fiscal year Y Y

Notes: The outcome is the first difference within a district of the log of annual GDP measured at the district level.
We instrument for annual average of PM2.5 measured at the district level during a fiscal year from April to March and
weighted by population with inversions and inversion strength. Pollution data comes from the Van Donkelaar group.
Inversion data comes from the MERRA re-analysis data and measures the incidents when temperature at atmospheric
levels above the surface is higher than at the surface by district for each fiscal year. Inversions are measured as the
share of days with an inversion. Inversion strength is the average difference in temperature when there is an inversion.
All inversion data and weather controls are population weighted averages across districts. The unit of observation is
the district year. In all columns we control for the first difference of the number of days in one of fifteen precipitation
bins, the number of days the mean temperature is in one of twenty-five bins, a second order polynomial of relative
humidity and surface pressure, four wind speed bins, ten wind direction bins, and interactions of relative humidity
and the square of relative humidity with all of our temperature bins. All columns include fiscal year fixed effects. In
all columns we cluster standard errors at the district level. We winsorize GDP growth at 1%. (* p<.10 ** p<.05 ***
p<.01).
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Appendix 2 Additional Figures

Figure A1: Alternative meteorological controls

Notes: We plot the point estimates of the impact of year-to-year changes in annual average
PM2.5 on year-to-year changes in GDP growth rates from our primary IV specification with
the dashed blue line. We vary how we control for surface level meteorological conditions as
indicated by the squares on the bottom of the figure. Dark squares indicate a variable has
been included in the regression. Blue squares indicate our primary specification. The dashed
red line on the figure is the point estimate from our primary specification. 90 percent and
95 percent confidence intervals are shaded on the figure. Humidity interaction indicates that
we interact our humidity measures with all temperature bins.
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